Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Hum Genet ; 88(1): 4-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37872827

RESUMO

Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.


Assuntos
Cardiopatias Congênitas , Síndrome de Heterotaxia , Humanos , Camundongos , Animais , Cílios/genética , Cílios/patologia , Cardiopatias Congênitas/genética , Coração , Síndrome de Heterotaxia/genética , Testes Genéticos
2.
PLoS Genet ; 13(10): e1007068, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084269

RESUMO

The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Pericárdio/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Vasos Coronários/metabolismo , Embrião de Mamíferos , Transição Epitelial-Mesenquimal/genética , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Camundongos , Camundongos Knockout , Mutação , Miocárdio/metabolismo , Pericárdio/metabolismo
3.
Development ; 144(9): 1635-1647, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28465335

RESUMO

The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation.


Assuntos
Membrana Celular/metabolismo , Pericárdio/citologia , Pericárdio/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Polaridade Celular , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Espaço Intracelular/metabolismo , Camundongos Knockout , Modelos Biológicos , Miocárdio/citologia , Miocárdio/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Int J Mol Sci ; 16(2): 4043-67, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25689424

RESUMO

Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson's, Alzheimer's and Huntington's disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Medicina Regenerativa , Animais , Diferenciação Celular , Reprogramação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/citologia , Doenças Neurodegenerativas/terapia , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA